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SUMMARY

A new procedure to solve some �uid problems formulated in elliptical partial di�erential equations is
presented. A Genetic Algorithm with a dynamical encoding and a partial grid sampling is proposed
for it as the advantages of solving the problem without using all grid nodes at the same time, and of
adjusting step grid, without increasing the complexity. The designed method has immediate applications
some self-contained and some in combination with other traditional methods. Also, it provides a method
alternative to the existing ones and uses simpler operations. Theoretical mathematical foundations of
the problem are easily incorporated and that as a powerful characteristic of the method. In practice, our
focus is to obtain an acceptable approximated solution. The method makes it possible to solve problems
with vague boundary conditions since no algebraic equation system is involved in the process. From
the solution reached we have good information available to make an appropriate mesh to solve the
problem through a traditional method. Comparative results for both linear and non-linear potential �ow
problems inside a nozzle are given. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Numerical solutions approximated by traditional methods such as �nite di�erences (FD),
�nite elements and �nite volumes are often used to solve Engineering and Applied Physics
problems formulated in partial di�erential equations (PDE). The solution quality obtained
from most FD traditional schemes depends remarkably on the characteristic of the grid, on
the number of nodes. To obtain good results, it is necessary to use grids with a greater number
of nodes with a small distance among them. In this way the computational cost is increased
considerably due to the size of the linear equation systems to be solved.
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The non-linear problems show even more di�culties, and a stronger e�ort is needed to
reach solution at all points of the grid simultaneously. Any alternative approach must exhibit
some or all of the following advantages:

• Possibility to solve the problem with a more local point of view, for example, by using
domain decomposition or partial samples of subsets of nodes of the total grid, i.e. not
using the whole grid at the same time.

• Use of simpler operations, which results in a smaller complexity.
• Capacity to vary step grid without increasing the complexity meaningfully.
• Easy adaptability to parallelize the algorithms.
The Evolutionary Algorithms (EAs) [1] are search procedures which have been used in

many real world applications because they work somewhat independent of the problem char-
acteristics. Among them, the Genetic Algorithms (GAs) [2, 3], can be used in combination
with FD schemas to optimise them to increase the e�ciency of this method [4] and it can be
a tool in computational �uid dynamical �eld also. In the present paper, we propose a method-
ology that uses GAs to obtain �uid speeds for both potential and full potential �ows, in a
curvilinear duct and in a nozzle. To solve this kind of problem with evolutionary strategies it
is necessary to start from an initial value of the solution domain for each point that permits
GA to evolve towards a solution nearby the desirable one. Furthermore, an adequate �tness
function is necessary.
The information based on the knowledge of the qualitative behaviour of the solution and

some simple qualitative properties, permits us to establish an adequate initial solution. Through
a dynamical encoding for the candidate solutions, we can move towards a solution with the
same or very nearly the same quality as the one obtained by other methods. In linear or
quasi-linear cases, the qualitative properties of the solution are obtained from the mathematical
analysis of the PDE and these can be considered in the search process in a simple way.

2. GENETIC ALGORITHM WITH DYNAMICAL ENCODING AND PARTIAL
GRID SAMPLING

The general characteristics of our evolutionary algorithm proposed here are discussed below.
A grid is built and the GA tests a population of candidate solutions through a partial grid
sampling [4] of the nodes of the grid in each generation. These U (x; y) solutions for each
node are sampled from a dynamic interval. The aim of verifying a numerical scheme at each
nodal point is equivalent to minimizing the corresponding objective function. By using the
tournament between the candidate and the previous best solution, the selection in one node
is carried out. One point crossover and a smooth mutation are used in the exploration stage.
The pseudocode for the whole evolutionary algorithm is illustrated in Figure 1.

2.1. Partial grid sampling

In each test case, a grid is built in the domain. An advantage of the present method is the
possibility of using only a sample of nodes solution at each generation instead of the whole
grid. The partial grid sampling is based on choosing j di�erent nodes randomly at each
generation. Each chromosome in the population corresponds to one di�erent node solution in

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1167–1176



GENETIC ALGORITHM FOR SIMULATION OF POTENTIAL FLOW 1169

Figure 1. The pseudocode for the whole evolutionary algorithm.

the grid. The chromosomes give the value of the solution in its node of the grid. All nodes
must have been chosen before a node can be chosen again. In successive generations, the
nodes are chosen to complete the whole grid.

2.2. Dynamical encoding

A dynamical encoding [5] is used to calculate the U (x; y) from the chromosomes. In that
way, for the node (xj; yj) and the chromosome integer value i∈ [0; 2l − 1], the U (xj; yj) is

U (xj; yj) = i · b− a2l − 1 + a

b=max{U (xj; yj+1); U (xj; yj−1)}
a=min{U (xj; yj+1); U (xj; yj−1)}

(1)

where U (xj; yj+1) is the value of U (x; y) at the upper node (xj; yj+1), U (xj; yj−1) is the value
of U (x; y) at the lower node (xj; yj−1) and l is the chromosome length. The previous method
is valid for either increasing or decreasing the subdomain in the space of solutions.
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This encoding is dynamical because the U (x; y) changes as time passes in the evolutionary
process. So, the �tness distance between nodes changes too. This dynamic encoding permits
the GA to work in good search regions and save computational cost.

2.3. Genetic operators

1-point crossover: �=1: It is the Holland’s classical genetic operator [2].
Smooth mutation: A mutation smooth enough is used [4] in both genotype and phenotype

space. The smooth mutation process is:

1. A random number, rand, is chosen.
2. If rand6� (mutation probability) the individual mutates, otherwise it does not.
3. If rand ∈ (�k−1; �k] then k mutations are accomplished, k=1; 2; 3; : : : ; L. (A bit can mutate
more than once). Here �k is the kth power of �.

4. If standard binary codi�cation is used, the most left k bits in each criterion (co-ordinate)
do not mutate. The l− k remaining bits can mutate from 0 to k times.

5. While the whole population is not checked go to 1.

This type of mutation is a little disruptive, and for this reason it is necessary to use
high values of mutation probabilities (0.7–0.8). With the fourth step the smooth e�ect of the
mutation is increased.
Selection: A tournament selection operator between the new candidate and the previous

solution is accomplished. The �tness function is a numerical scheme.

3. EVOLUTIONARY FLUIDS DYNAMICS

3.1. Potential �ow in a duct

We introduced this evolutionary method in Fluid Dynamics with the resolution of the potential
�ow in a curvilinear duct [6, 7]. The streamfunction U (x; y) accomplishes the following linear
PDE:
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The streamfunction iso-values in the duct coincide with the curves in R2. This function
accomplishes the equation U (x; y)= �=constant, and the solution agrees with the solution
found for the EDP. The grid has been built taking advantage of this information (Figure 2).
The points (x; y) that ful�l the equation are considered to belong to the same grid row. Such
selection involves a deformation with respect to the classic rectangular grid. We are taking
advantage of function U invariance:

y=y0H (x) (3)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 43:1167–1176



GENETIC ALGORITHM FOR SIMULATION OF POTENTIAL FLOW 1171

Figure 2. Control grid (13× 11) for the streamfunction in the curvilinear duct.

Figure 3. Comparison of the solutions for the potential �ow in a duct, between the exact
solution and the GA solution at 5000 generations.

The solutions of the Laplace equation have well-based properties [8]. These properties
can be incorporated into the design of some characteristics of the GA. Thus, the dynamical
encoding employed uses the maximum–minimum principle. A random value in the interval
[0,1] is assigned to each U (x; y) solution for the nodes of the grid with the only increasing
monotonicity condition in y due to the symmetry problem.
Also, the mean value theorem for the harmonic functions is used in the selection stage,

resulting in the numerical schema:

M =
1
4
[U (xi+1; yj) +U (xi−1; yj) +U (xi; yj+1) +U (xi; yj−1)]

f=M −U (x; y)
�tness function =min{|f|}

(4)

In Figure 3, the results obtained with GA in 5000 generations are compared with the
analytical solution.
The results, for a �xed value of x, x=0:842, and y variable, are shown in Table I and

Figure 4.
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Table I. Evolution of GA (13,11) Grid with x=0:842 �xed.

U(x; y) U (x; y) U (x; y)
x y Exact 3000 gen 5000 gen

0.842 0.000 0.000 0.000 0.000
0.842 0.027 0.100 0.097 0.098
0.842 0.053 0.200 0.194 0.197
0.842 0.080 0.300 0.292 0.296
0.842 0.106 0.400 0.391 0.395
0.842 0.133 0.500 0.490 0.494
0.842 0.159 0.600 0.592 0.594
0.842 0.186 0.700 0.693 0.696
0.842 0.212 0.800 0.795 0.797
0.842 0.239 0.900 0.897 0.898
0.842 0.265 1.000 1.000 1.000

Figure 4. Comparison between the potential �ow U (x; y) or exact solution (solid line), and, the GA
solution at 3000 generations (diamonds), x=0:842.

The results of the GA at generation 3000 show acceptable values, though the results at
generation 5000 seem to show an evolution towards more adapted and accurate values. Beyond
5000 generations the GA does not seem to improve the results.

3.2. Speeds for compressible �ow in a nozzle

Now, the speeds for transonic �ow in the compressible and isentropic �ow within a nozzle,
[9, 10] are studied. The di�culty of the problem is well known. Our objective is to use the
evolutionary method to obtain an approximate value of the speed component in a totally
developed �ow. The lateral section of the nozzle for compressible �ow is illustrated in
Figure 5. The central line is the symmetry axis.
The resulting di�erential equation for the speed components is obtained from the continuity

equation

∇ · [�(u; v)u]= 0 (5)
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Figure 5. Lateral section of the nozzle for compressible �ow. The central line is the symmetry axis.

For compressible and isentropic �ow, the density depends on the speed components:

�=�0

[
1− �− 1

2c20
(u2 + v2)

] 1
�−1

(6)

c0 is the speed of sound in normal conditions. �=1:4 for the air.
After working with the speeds, the equation solely contains �rst derivatives. Making a

simple change of variables, the following �rst-order partial di�erential equation results for
components without dimensions (u′; v′)= (u=c0; v=c0). It is a non-linear equation:
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We take boundary conditions for (u′; v′)
u′(0; y)= u′(2; y)=Cte (constant value, in the numerical application here, 0.242)

v′(0; y)= v′(2; y)=0 (8)

Free boundary conditions are introduced in the lower frontier (symmetry axis) of the nozzle,
u′(x; 0), v′(x; 0).
The shape of the nozzle is given by y=H (x), where H denotes the ratio of the half-height

to the half-height at the throat, and then at the wall of the nozzle the condition that the �uid
follows the wall is n · (u′(x; H (x)); v′(x; H (x)))=0, with n the unitary surface vector of the
wall. Then v′(x; H (x))=u′(x; H (x))=dH (x)=dx.
Also, in this problem, curl(u′; v′)=0. We included this information in the evolutionary

process through the condition

@v′

@x
− @u′

@y
=0 (9)

With boundary conditions (8) and the frontier conditions, the solution has axial symmetry
and thus the area from the symmetry axis till the upper wall of the nozzle is su�cient to be
considered as a domain of the problem.
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3.3. Grid evolution

In this two-dimensional domain a grid is generated, with variable steps hx and hy. A numerical
scheme that proved e�ective in the interior of the domain for getting an acceptable evolution
of the grid points was the centred scheme:

@ui; j
@x

=
ui+1; j − ui−1; j

2hx
(10)

Analogous for the y derivative. Other tested schemata, progressive as well as regressive,
produce the convergence of grid values toward a constant value that depends on the scheme.
For avoiding all the grid points tending toward a constant, schemata of two steps were used

at the points of the lower frontier with free boundary conditions and progressive schemata.
Thus, the derivative for v in the lower frontier is

@vi;1
@y

=
vi+1;1 − vi;1

hy
(11)

A value for u as well as for v in a chromosome of two criteria, (u′(x; y); v′(x; y)), is
associated to each grid point (x; y). 10 bits are used for each criterion. Thus, the chromosome
length is 20 bits.
The initial candidate solutions for (u′(x; y); v′(x; y)) to start the evolution process should

contain the qualitative or general characteristics of the exact solution to get an appropriate
convergence towards the real solution. Thus, we consider the solution in the inferior frontier,
y=0, to be growing until x=1 from the frontier condition at x=0, then we take it to
decrease until the exit frontier, x=2, and here it takes the constant value as at x=0, and to
each x �xed, a random value is assigned to the points that have the same value as x, in an
interval close to the value given to the node (x; 0). All initial solutions of the grid are stored
in memory. The following sequence is repeated until the stop criterion:

• 10 points of the grid are chosen at random.
• A chromosome is chosen as a trial solution for each point, according to the interval
associated with the grid point in the current generation (dynamic interval).

• 10 chromosomes are obtained from the population.
• One point crossover between couples of chromosomes, with crossover probability �=1.
• The o�springs are mutated, uniform mutation with high probability �=0:8.
• Tournament selection between the o�spring and the previous solution of a grid point in
the sampling population. The (u′(x; y); v′(x; y)) selected will be the one that minimizes
the numerical scheme associated with the previous di�erential equation. This selected
individual becomes the new solution that is assigned to this grid point.

A previously sampled point cannot be taken again until the entire grid is selected.

3.4. Two-stage optimization

Due to the non-linearity of the problem, the initial approximate solution (with the complete
numerical scheme) can evolve de�ciently, diverging towards very distant values. To avoid
this divergence the boundary conditions are used. Thus, in the �rst stage of the algorithm the
part of the numerical scheme that only contains the function u′ (ideal �uid problem with only
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Figure 6. Mach solution for the normalized �ow, after 200 000 generations.

Figure 7. Velocity �eld, after 200 000 generations.

component in the x-axis) is chosen as objective function. The rest of the di�erential equation
is considered as a small perturbation

(
�+ 1
2

u′2 − 1
)
@u′

@x
=0 (12)

After a number of generations, for example, here 2000 generations, the evolutionary system
is �xed on the values of the ideal approximation. Now, the second stage starts, where the
full numerical scheme of the di�erential equation is used. Empirical checking con�rms that
this strategy of two stages obtains more optimum outcomes than the one-stage strategy. The
�rst stage is a learning stage. The solutions obtained at this �rst stage are a training set for
starting the next stage, which is now in 2D context.
In Figures 6 and 7 are illustrated the solution obtained with this evolutionary method after

200 000 generations and a total number of 1339 nodal points are illustrated. They show an
acceptable approximation to the qualitative shape of the real solution for this problem. The
values of the solution shown here are averages over ten executions of the algorithm.
The computed results are in acceptable agreement with the numerical results obtained from

the linearization algorithm of Gelder [6, 11] di�erences are around 5%.
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4. CONCLUSIONS

The most important contribution in this paper is the demonstration of the capability and
applicability of the Evolutionary Algorithms such as Genetic Algorithms for solving linear and
non-linear boundary problems of stationary potential �ow. Pioneering results were presented
in References [4, 7], and here the work has been reoriented to �uid dynamics problems and
extended to non-linear potential �ow problems inside a nozzle.
We have proposed a genetic algorithm that through a partial sampling technique and a

dynamic interval reduction permits great advantages with respect to other evolutionary algo-
rithms like avoiding a rigid connectivity to discretize the domain and thus it is a meshless
method. The amount of the computer storage is low and convergence behaviour is good
because of taking into account in the algorithm the qualitative characteristics of the solution.
Also, the method is easy to implement in parallel environments. However, more analysis must
be accomplished to improve accuracy of the numerical results. Many directions, like use of
higher-order approximation schemes into the objective function, are open. The proposed algo-
rithm does not increase much the total computational cost and neither memory requirements.
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